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Abstract In this paper we present a comparison
of two fuzzy-control approaches that were devel-
oped for use on a non-linear single-input single-
output (SISO) system. The first method is Fuzzy
Model Reference Learning Control (FMRLC)
with a modified adaptation mechanism that tunes
the fuzzy inverse model. The basic idea of this
method is based on shifting the output member-
ship functions in the fuzzy controller and in the
fuzzy inverse model. The second approach is a 2
degrees-of-freedom (2 DOF) control that is based
on the Takagi-Sugeno fuzzy model. The T-S fuzzy
model is obtained by identification of evolving
fuzzy model and then used in the feed-forward
and feedback parts of the controller. An error-
model predictive-control approach is used for the
design of the feedback loop. The controllers were
compared on a non-linear second-order SISO sys-
tem named the helio-crane. We compared the per-
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formance of the reference tracking in a simulation
environment and on a real system. Both methods
provided acceptable tracking performance during
the simulation, but on the real system the 2 DOF
FMPC gave better results than the FMRLC.
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1 Introduction

The fuzzy logic is known to be able to solve
control problems that are hard to solve with the
traditional approaches. The main motivation for
this paper comes from the fact that the fuzzy logic
can solve problems that are highly non-linear. Fur-
thermore, many different fuzzy control algorithms
were developed over the years, and this motivated
us to make some comparison between different
fuzzy control approaches. The goal of this paper is
to evaluate the performance of two different fuzzy
control approaches and to determine whether the
different fuzzy controllers can solve the same con-
trol problem. In this paper we compared the FM-
RLC with a modified adaptation algorithm and
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the 2 DOF FMPC. The main contribution of this
paper is the comparison of the performance of
two different fuzzy control approaches. The fuzzy
control approaches were compared not only in
simulation environment, but also on the real sys-
tem. The paper shows how different fuzzy control
methods can be used to control SISO non-linear
systems.

The outline of the paper is as follows. Section 2
gives an overview of the existing work. Section 3
briefly introduces the FMRLC and the FMRLC
with a modified adaptation mechanism that tunes
the fuzzy inverse model. Section 4 gives a brief
overview of the second fuzzy-control scheme, the
2 DOF FMPC, and presents the method of evolv-
ing fuzzy modelling. This is followed by Section 5,
which presents the helio-crane system that was
used for the comparison of both the presented
fuzzy-control algorithms. In Section 6 the exper-
imental results are presented. Both the control
approaches were tested in the simulation and real
environments. The performances of both control
algorithms were evaluated using several different
criteria. Finally, Section 7 gives a descriptive com-
parison of the presented control approaches based
on the experimental results and then draws some
conclusions.

2 Existing Work

Since 1965, when the fuzzy-set theory was pro-
posed by Zadeh [1], fuzzy logic has been success-
fully applied to a diverse range of applications,
mostly in the fields of control and artificial intelli-
gence. The heart of a fuzzy system is the inference
engine that is responsible for the rule processing.
The inference engine operates on a set of linguistic
variables, so the crisp input variables must be
described in terms of a set of linguistic variables
(e.g., error is small/big, change is fast/slow), a
process known as fuzzification. After the fuzzy-
rules processing, a process of defuzzification is
necessary to transform the linguistic variables
back to the crisp values, so that the result can be
applied to a real system.

A fuzzy controller becomes self-organizing,
self-learning or self-tuning when it is able to ad-
just the control rules based on past experience

without any human intervention. The first self-
organizing fuzzy controller was worked out in [2]
and was further elaborated in [3]. Unfortunately,
the usability of that approach was limited to a
small class of plants because of the difficult design
for tracking reference signals that were different
from a step signal. This drawback was eliminated
by the Fuzzy Model Reference Learning Control
(FMRLC) algorithm, which was introduced for
the first time in [4]. The main idea is based on the
conventional Model Reference Adaptive Control
approach (MRAC) [5].

The self-learning concept of the FMRLC seems
to have great potential which is supported by
some successful applications in aeronautics [6, 7],
hydraulic control units [8, 9], the control of ma-
nipulators [10, 11], induction machines and gen-
erators [12, 13]. Other areas associated with the
use of FMRLC are analyzed, e.g., in [14–19]. Some
improvements to the method can be found in
[20] with an application in [21]. Other approaches
based on the FMRLC method are described in
[22, 23].

Fuzzy model represents a convenient way
to describe the system behaviour. Furthermore,
Takagi-Sugeno fuzzy models are thought of as
universal approximators, since every system can
be represented to an arbitrary precision in the
form of a T-S fuzzy model [24, p. 77].

To identify the T-S model the structure and the
parameters of the local models must be identified
[25]. A structure identification includes an esti-
mation of the cluster centers (antecedent parame-
ters), which is usually done by fuzzy clustering.
Then for each cluster the sub-model’s parameters
are estimated, which is usually done with a least-
squares method [26].

The identification can be made off-line or on-
line. The on-line learning of the fuzzy model has
made significant progress in the past few decades.
A range of on-line identification procedures was
developed. Some of them are based on fuzzy logic
(eTS [27], exTS [28, 29], simple_TS [30], +eTS
[31], FLEXFIS [32], FLEXFIS+ [33]), others use
neural networks that realize the behavior of the
fuzzy model (EFuNN [34, 35], DENFIS [36], AN-
FIS [37], GANFIS [38], SOFNN [39], SAFIS [40],
SCFNN [41], NFCN [42], D-FNN [43], GD-FNN
[44], SONFIN [45], NeuroFAST [46], RAN [47],
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ESOM [48], Neural gas [49], ENFM [50], and
GAP-RBF [40]).

The fuzzy models that are normally used by
the methods are first-order Takagi-Sugeno (AN-
FIS, SONFIN, D-FNN, GD-FNN, DENFIS, eTS,
NeuroFAST, SOFNN, etc.), zero-order Takagi-
Sugeno (SCFNN, SAFIS, GAP-RBF, EFuNN) or
a generalized fuzzy model (GANFIS).

The methods also differ in their ability to
adapt the fuzzy model and its structure. Some of
the methods require an initial fuzzy-model struc-
ture, which is then adapted. The adaptation in-
cludes only the adaptation of the consequent and
premise parameters (adaptive methods [37, 38]).
Some of the methods include a mechanism for
adding new clusters to the model structure (incre-
mental methods [27]). Recently proposed methods
also include mechanisms for merging, removing
and splitting clusters. The methods use different
clustering algorithms, such as ECM [36], recursive
subtractive clustering [27], Gath-Geva clustering
[50] and others. The local model parameters’ iden-
tification is usually done with some version of the
least-squares algorithm. In this paper the evolving
fuzzy-model method (eFuMo) will be used for the
fuzzy-model identification. The method is based
on the recursive Gustafson-Kessel clustering al-
gorithm [51, 52] and recursive fuzzy least squares
[27]. It employs evolving mechanisms for adding,
removing, merging and splitting the clusters. This
method was also used in [53] for constructing the
adaptive fuzzy predictive functional controller for
a semi-batch reactor.

The model of a system can be used to make
predictions about the system behaviour, there-
after the model be used to determine the optimal
control actions that take the system dynamics and
constraints into account, the approach known as
predictive control. Over the years many different
predictive control algorithms have been devel-
oped: Generalized Predictive Control (GPC) [54],
Model Algorithmic Control (MAC) [55], Predic-
tive Functional Control (PFC) [56], Model-based
Predictive Control (MPC) [57] etc. Predictive con-
trollers were originally designed for linear sys-
tems, but the idea has since been extended to
non-linear systems. Many different fuzzy-control
approaches have been proposed: predictive func-
tional control based on a fuzzy model [58, 59],

Fuzzy Model-Based Predictive Control (FMBPC)
[60], etc.

Historically, the main emphasis in system-
control design has been on the feedback loop;
however, recently, the research interest in feed-
forward control has been growing [61, 62]. A
feedforward controller alone can never achieve an
accurate tracking performance, but with the addi-
tion of a feedback extension this deficiency can be
eliminated. The combination of feedforward and
feedback control loops is known as 2 DOF control.
The feedforward part based on the fuzzy inverse
model should provide a fast reaction to reference
changes and drive the output into the vicinity of
a reference. A feedback part based on the fuzzy
model should eliminate the reference tracking er-
rors that occur due to disturbances, drift, noise,
imprecise system modelling, etc. The idea of 2
DOF control has, in recent years, received a lot
of attention in the control community and has
been successfully implemented in a diverse range
of applications [61, 63–68].

3 FMRLC with a Modified Adaptation
Mechanism

3.1 Classical FMRLC

First, a classical FMRLC method will be described
briefly. More details can be found in [24]. The
basic scheme of the FMRLC with a fuzzy PD
controller and single-input single-output (SISO)
system is shown in Fig. 1. It consists of four main
parts: the fuzzy controller to be tuned, the plant,
the reference model and the learning (adaptation)
mechanism. Let us describe the role of each com-
ponent in more detail.

For a better and more intuitive explanation
the following nomenclature was established. The
inputs to the controller before the scaling and
the output from the controller after the scaling
are labelled without a lower index, see Fig. 1.
The inputs to the controller after the scaling and
the output from the controller before the scaling
include the lower index r. All the gains begin with
the letter g followed by the lower index labelling
signal that belongs to the relevant gain.
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Fig. 1 Basic structure of FMRLC

3.1.1 The Fuzzy Controller

For the explanation a fuzzy PD controller is used;
therefore, the inputs to the controller are the con-
trol error e(k) = r(k) − y(k) and the change in the
error de(k) = e(k)−e(k−1)

Ts
, and the output from the

controller is u(k), where Ts is the sampling time
and k is the time sample, see Fig. 1. Generally, the
structure and the inputs to the fuzzy controller can
be chosen arbitrarily.

For fuzzy-controller design, the scaling gains
are used to normalize the universe of the dis-
course, see Fig. 1. These gains are normally tuned
within the overall FMRLC initialization.

The input fuzzy sets are chosen to characterize
the premises of the controller rules, while their
shape and position remain fixed during the whole
control process. In the fuzzy controller, uniformly
distributed, symmetric triangular fuzzy sets are
normally used for both input universes of the
discourse. The position of the output fuzzy sets
is assumed to be unknown and will be synthe-
sized or tuned automatically. Although arbitrary
shapes of the output fuzzy sets can be chosen the
singletons are sufficient in most applications. At
the beginning of the adaptation the position of all
of them is normally supposed to be at zero, but a
different initialization can be set up. To complete
the specification of the fuzzy controller a stan-

dard center-of-gravity defuzzification technique is
used.

3.1.2 Reference Model

The reference model defines the closed-loop
specifications (such as stability, rise time, over-
shoot, etc.) and generates the desired trajectory.
Similar to the conventional MRAC, the learning
mechanism modifies the fuzzy controller so that
the closed-loop system behaves like the given
reference model. The reference model has to be
chosen with care because if the requirements are
too strong the adaptation mechanism shifts the
output fuzzy sets by large steps, which can cause
a loss of stability.

3.1.3 Learning Mechanism

The learning mechanism consists of two parts (see
Fig. 1): a fuzzy inverse model and a knowledge-
base modif ier. The purpose of the fuzzy inverse
model is to determine the changes p(k) in the
process inputs u(k) for pushing the deviation w(k)

to zero.
The rule design in the fuzzy inverse model is

based on the fact that most often a process op-
erator can roughly characterize the behaviour of
the process. The inverse model may be designed in
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such a way, for example, if the error is small, then
the adjustments to the fuzzy controller should be
small, and if the error is small, but the rate of
error increase is high, then the adjustments should
be larger. Several examples and ways of choosing
these rules can be found, e.g., in [24]. Given the
information about the necessary changes p(k) in
the control input u(k) to force the error w to
zero, the knowledge-base modifier shifts the out-
put membership functions of the pertinent rules
that acted with the highest degree of fulfillment at
the time instant kTs − Td, where Td is the delay of
the plant. Alternative knowledge-base modifiers,
described, e.g., in [69], can be used for a more
effective adaptation process in the presented FM-
RLC approach too. Note that analogously to the
fuzzy controller, the fuzzy inverse model contains
normalizing scaling factors, i.e. gw, gdw, gp, for
w(k), dw(k) and p(k).

3.2 FMRLC with a Modified Adaptation
Mechanism

FMRLC with a modified adaptation mechanism
[70] contains an adaptation mechanism for the
rules in the inverse model. The proposed algo-
rithm proceeds in such a way that if the conse-
quence of a rule is a worse reference-signal track-
ing from the control error er(k) and its difference
der(k) point of view, the output of the rule is
modified.

When a rule in the controller is activated again
(after the time interval Tm = mTs) the values of
the relative change of the error em(k) = er(k) −
er(k − m) and the relative change of the error
difference dem(k) = er(k) − er(k − m) are tested.
In the case that the actual values of em(k) and
dem(k) are both positive or both negative, the
consequence of the rule in the inverse model is
changed.

For this purpose a new fuzzy system for the
modification of the inverse model is established
that maps em(k) and dem(k) to the necessary
changes in the inverse model output p(k). Note
that similar to the fuzzy controller and the inverse
model this fuzzy system contains the scaling gains
gme , gmde and gmu . The input membership functions
cover the whole input space of the fuzzy system.

Table 1 Rules in the fuzzy system for modification of the
inverse model

MF e(k) MF dem(k) Output MF

Negative Negative Negative big
Negative Zero Negative medium
Negative Positive Negative small

.

.

.
.
.
.

.

.

.

Positive Negative Positive small
Positive Zero Positive medium
Positive Positive Positive big

A part of the rules in the fuzzy system for the
modification of the inverse model is depicted in
Table 1. The fuzzy system has three input tri-
angular membership functions that are uniformly
spaced over the interval [−1, 1] on both inputs.
The membership functions are labelled by the lin-
guistic values Negative, Zero and Positive. On the
output there are nine singletons that are uniformly
spaced on the interval [−1, 1] labelled by the
linguistic values Negative big, Negative medium,
Negative small, Zero negative, Zero, Zero posi-
tive, Positive small, Positive medium and Positive
big.

The fuzzy system for the modification of the
inverse model has rules of the following form:

IF em is E j AND dem is Ck , THEN um is Ul , (1)

where em and dem denote the linguistic variables
associated with the controller inputs em(k) and
dem(k), respectively, um denotes the linguistic
variable associated with the fuzzy system output
um(k) and E j, Ck and Ul are fuzzy sets.

To obtain the final value of pm(k) for the adap-
tation of the rule in the inverse model the output
um(k) from the fuzzy system is multiplied by the
value sign(p(k − m)). This fuzzy system brings the
change into effect by shifting the output member-
ship function of the rule in the inverse model by
pm(k).

4 2 DOF FMPC

The main goal of the presented control algorithm
is to provide precise reference-signal tracking.
The control scheme depicted in Fig. 2 consists
of a fuzzy system identification block and a 2
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Fig. 2 Control structure
of 2 DOF FMPC

Feedforward

Feedback System

Identification

Fuzzy model

r

e

F

B

−

DOF FMPC: a combination of feedforward and
feedback loops. Once the fuzzy-system model is
identified, it can be fed to the controller and the
controller can be switched on. In the following
section the basic structure of the controller is
presented briefly.

4.1 Fuzzy Modelling

An arbitrary system can be described with a set of
K fuzzy rules {R j} j=1,...,K in Takagi-Sugeno fuzzy
form, where the rule R j is defined as:

IF y(k − n + 1) is A j
n AND . . . AND y(k) is A j

1 ,

THEN y(k + 1) = f j(u(k − m + 1), . . . , u(k),

y(k − n + 1), . . . , y(k)) . (2)

Antecedents of the rules (IF parts) describe the
fuzzy regions in the space of input variables. A j

i
represent fuzzy sets characterized by their mem-
bership functions. For the description of the input-
output dynamics in THEN parts (consequences)
we chose the Nonlinear Auto Regressive model
with eXogenous inputs (NARX), but any other
model could be used as well. The NARX model
predicts the next output based on past inputs
and outputs. Furthermore, we assume that every
THEN part of each fuzzy rule can be approxi-
mated with the affine NARX model:

f j(k) = θT
j ψ(k) , (3)

where θT
j = [r j b m, j . . . b 1, j an, j . . . a1, j] contains

all the parameters that apply to the rule R j. In
the vector ψT(k) = [1 u(k − m + 1) . . . u(k) y(k −

n + 1) . . . y(k)] the previous inputs and outputs
are gathered.

The predicted output of a fuzzy model can be
given in a compact matrix form as follows:

y(k + 1) = βT(k)�Tψ(k) . (4)

Here, βT(k) represents the normalized degrees
of fulfillment for the whole set of fuzzy rules
{R j} j=1,2,...,K in the current time step, written in
the vector form βT(k) = [β1(k) β2(k) . . . βK(k)].
We assume the normalized degrees of fulfillment,
which are generally time dependent, comply with
Eq. 5 for every time step k.

K∑

j=1

β j(k) = 1 (5)

In Eq. 4 the matrix � ∈ R
1+m+n × R

K contains all
the parameters of the fuzzy model for the whole
set of rules {R j} j=1,2,...,K: � = [θ1 θ2 . . . θ K].

Next, a brief overview of the identification
method is presented.

4.2 Evolving Fuzzy Model

The evolving fuzzy model is based on recursive
Gustafson-Kessel (GK) clustering. The algorithm
starts with one cluster and adds clusters if neces-
sary. The first data sample is taken as an initial
center of the first cluster. The method consid-
ers two different regression vectors. One is for
clustering (x f ) (clustering data vector) and the
other is for local model-parameter estimation (xk)
(the regression vector). The y in the following
equations denotes the output of the process.

To cluster the input-output space the positions
of the cluster centers and the variance of the data
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around the clusters should be calculated. Using
the fuzzy c-means recursive algorithm this can be
done using the following equations. First, the new
center position of the cluster i ∈ {1, 2, . . . , c} is
calculated as:

vi(k+1) = vi(k)+
(
μi,k+1

)η (
x f (k+1)−vi(k)

)

si(k + 1)
,

(6)

where vi(k) is the center position for the previous
sample, x f (k + 1) is the current clustering data
vector and si(k + 1) is the sum of the past mem-
bership degrees calculated as:

si(k + 1) = γvsi(k) + μ
η

i,k+1. (7)

The initial si(0) is usually set to one. The γv is the
forgetting factor. The membership μi,k+1 of the
current clustering vector x f is calculated as:

μi,k+1 = 1
∑c

j=1

(
di,k+1

dj,k+1

) 2
η−1

, (8)

where di,k+1 is the distance of the clustering vector
to the i-th cluster and η is the fuzziness (in most
cases η = 2). The distance used with the GK clus-
tering algorithm is defined as:

d2
i,k+1 = (

x f (k+1)−vi(k)
)T Ai

(
x f (k+1)−vi(k)

)
,

(9)

where Ai = [ρi det(Fi)]1/p F−1
i . The parameter ρi

is usually set to a value of one and p depends on
the number of variables (number of elements of
x f ).

The fuzzy covariance is calculated using the
following equation:

Fi(k + 1) = γc
si(k)

si(k + 1)
Fi(k) + μ

η

i,k+1

si(k + 1)
DFi

(10)

DFi = (
x f (k + 1) − vi(k + 1)

)

× (
x f (k + 1) − vi(k + 1)

)T
. (11)

A detailed description for the calculation of the
recursive inverse fuzzy covariance matrix and the
determinant can be found in [52].

Once the clusters are updated the fuzzy recur-
sive least squares are used to update the linear
sub-models’ parameters. There are different al-
gorithms proposed [27, 50, 71, 72], and these are
based on weighted recursive least squares. The
equations for adaptation based on [72] are:

ψ i(k + 1) = [1, xk(k + 1)T ]T

y(k + 1) = y(k + 1) (12)

P i(k + 1)

= 1

λr

(
Pi(k)− βi Pi(k)ψ i(k+1)ψT

i (k+1)Pi(k)

λr +βiψ
T
i (k+1)Pi(k)ψ i(k+1)

)

θ i(k + 1)

= θ i(k) + P i(k)βiψ i(k + 1)

× (
y(k + 1) − ψT

i (k + 1)θ i(k)
)

(13)

The parameters of the i-th sub-models are de-
noted as θ i, the forgetting factor is denoted with
λr and βi denotes the membership degree of the
current clustering vector to the i-th cluster. In
general, the βi the membership degrees that are
calculated during the cluster update do not have
a smooth transition. Therefore, when identifying
a process with a smooth nonlinearity it is better
to recalculate the membership degrees using a
Gaussian function:

βi =
z∏

j=1

e
−

(
x f j

−vi j

)2

2ηmσ2
ij , (14)

where σ 2
ij is the j-th diagonal element of the fuzzy

covariance matrix and ηm is the overlapping factor
(set between 0.25 to 1), and z is the number of
components of the clustering vector x f . Note that
these membership degrees βi should be normal-
ized as in Eq. 5. The settings for the parameters
are given in [53] and [52].

The above equations represent the adaptation
algorithm of the eFuMo method. To achieve the
evolving nature of the method the mechanisms
for adding, removing, splitting and merging the
clusters must be included. The scheme of the al-
gorithm is shown in Fig. 3. The evolving mecha-
nisms are only briefly described in the following
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sample number

Is sample number >
last change + τ?

Recursive clustering

Recursive fuzzy
least squares

Adding mechanism

Removing mechanism

Merging mechanism

Correlation merging

Splitting

Has number of clusters
changed?

last change =
sample number

Evolving

Adaptation
no

yes

yes

Fig. 3 Flowchart of a single step in the identification of
evolving fuzzy model

paragraphs, since the topic is out of the scope of
this paper.

The adding of clusters is usually done by some
distance measure of the current clustering vector
to existing clusters or by membership degree. If
a current sample has a low membership degree a
new cluster is added with the center in the current
clustering vector. The eFuMo adding criterion is
based on the normalized distance of the current
clustering vector to the existing clusters.

The removing of clusters in our case is based on
their support. The support is, in this case, defined
as the number of samples that have the maximum
membership to a certain cluster. The cluster is
removed if, in a certain user-defined number of
samples, it does not receive a certain number of
support samples [31]. The removing of clusters is
also made based on the age of the clusters.

The merging algorithm is meant to merge the
clusters that are either close or have the same sub-
model parameters. The eFuMo method considers
merging based on the membership degrees of clus-
ters to each other [50] and merging based on the
correlation method [33].

The splitting of clusters is currently meant to
fine tune the fuzzy model. It can add clusters in the
input-output space where the output-model error
is higher than a predefined threshold. The eFuMo
method tracks the mean error for each cluster.
For each sample, if the sample does not satisfy the
distance condition for adding, the output error of
the current model is calculated. Then the model
error is divided among the clusters, depending on
the membership degrees of the current clustering
sample. If the error of one of the clusters exceeds
the defined threshold, this cluster is split. The
parameters of the model stay the same, and the
centers of the clusters are positioned based on a
fuzzy-variance matrix.

The eFuMo method also considers a general
time delay (τ ) for the evolving mechanisms. This
delay is user specified. If a change in the number
of clusters occurs, the evolving mechanisms are
stopped for this specified delay.

4.3 Feedforward Control

In this section we present a short summary of an
approach to model inversion introduced by Karer
[61]. First, we break apart the matrices �T =
[θ r �T

u θu,1 �T
y ] and ψT(k) = [1 ψT

u (k) u(k) ψT
y (k)]

of a fuzzy model Eq. 4, where θ r ∈ R
K, �u ∈

R
m−1 × R

K, θu,1 ∈ R
K, �y ∈ R

n × R
K and ψu ∈

R
m−1, ψ y ∈ R

n. Notice the slight abuse of nota-
tion, since θ in this section does not correspond to
the θ defined in Section 4.1. The input u(k) that
influences the next output y(k + 1) can now be
expressed as:

u(k) = y(k+1)−βT(k)(θr +�T
u ψu(k)+�T

y ψy(k))

βT(k)θu,1
.

(15)

To calculate the optimum feedforward input
uF(k) we substitute in Eq. 15 all the outputs y
for the appropriate reference values r and all the
inputs u for the previous feedforward inputs uF .

Equation 15 clearly violates the causality con-
straint, since the optimum input in time step k is
dependent on the future output at time step k + 1.
This does not pose a problem if the reference
signal r is known in advance.
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An important role in the calculation of the opti-
mum input is played by the shape of the reference
signal. It should be noted that some reference
signals (too frequency rich) may push the solution
of the system Eq. 15 outside the area of physically
feasible solutions (e.g., an infinite input impulse).
To overcome this problem, the reference signal
must be chosen carefully. It is recommended that
some kind of filtering is considered in order to
suppress the high frequencies. When selecting the
filter cut-off frequency we can take into account
the system time constant and the upper and lower
bounds of the input signal.

4.4 Model-Based Predictive Feedback Control

To eliminate the error e(k) we design an error-
model predictive controller. We follow the 2 DOF
error-model tracking control design presented by
Klančar and Škrjanc [64, 65]. We assume the
control action is a sum of the feedforward and
feedback parts u(k) = uF(k) + uB(k). According
to time-freeze theory, we can transform the fuzzy
model Eq. 4 into a time-varying, affine, state-
space form and then linearise it around the refer-
ence signal to obtain a linear, time-varying error
model:

e(k + 1) = A(k)e(k) + b(k)uB(k) ,

e(k) = cT(k)e(k) . (16)

Here we have assumed that the error model has
the same dynamics as the system model. The
selection of the state-space variables should be
according to the following scheme:

e(k) =

⎡

⎢⎢⎢⎣

e(k)

e(k) − e(k − 1)

e(k) − 2e(k − 1) + e(k − 2)
...

⎤

⎥⎥⎥⎦ , (17)

where every element, except for the first, is the
difference of a previous element for two consec-
utive previous time steps.

To ensure the integral action of the controller,
an additional state-space variable v is introduced
that integrates the output error v(k + 1) = e(k) +
v(k). Defining the augmented vector ξT(k) =

[eT(k) vT(k)], the extended system with the new
state can be written:

ξ(k + 1) =
[

A(k) 0
cT(k) 1

]
ξ(k) +

[
b(k)

0

]
uB(k) . (18)

Using the model Eq. 18 predictions of the error
ξ(k + i|k) over a finite horizon h can be made
as functions of the current error ξ(k) and the
unknown feedback inputs uB(k + i − 1|k) for i =
1, . . . , h. Next, a criterion function is defined:

J =
h∑

i=1

εT(k + i|k) Qε(k + i|k)

+ uB(k + i − 1|k)RuB(k + i − 1|k) , (19)

where we have introduced ε(k + i|k) = ξ r(k +
i) − ξ(k + i|k) as the difference between the refer-
ence error ξ r(k + i) and the predicted error ξ(k +
i|k). The reference error is usually defined as an
exponentially decreasing function in the form of
a state-space model: ξ r(k + 1) = Arξ(k). With an
analytical differentiation of Eq. 19 with respect
to the unknown inputs {uB(k + i − 1|k)}i=1,...,h, the
optimum input signals {uB,opt.(k + i − 1|k)}i=1,...,h

over the prediction horizon can be found [64]. Ac-
cording to the receding horizon strategy, at time
step k only uB,opt.(k|k) is added to the feedforward
input signal uF(k) and during the next time step
the whole procedure is repeated again.

The control algorithm can be tuned with several
different parameters. The weighting semi-positive
definite matrices Q ≥ 0 and R ≥ 0 determine how
strictly the predicted error should follow the de-
sired reference error and how energy rich input
signal is allowed, respectively. The controller can
also be tuned by selecting the error reference
model Ar and the length of the prediction horizon
h. These parameters define the desired response
dynamics and the power consumption.

5 Helio-crane

The system that was chosen for the comparison
of the fuzzy-control algorithms is composed of a
rigid metal rod on a pivot that can swing in a single
vertical plane like a pendulum (Fig. 4). The swing
of one end of the rod is physically restricted to
a vertical half-plane, so the ends of the rod can
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Fig. 4 Schematic model
of a helio-crane

freely move up and down. At the end of one end of
the swinging rod a motor with a lightweight plastic
propeller is placed perpendicular to the rod, so the
rod can be raised or lowered by changing the pro-
peller’s thrust Fm. When the motor is not turned
on, the end of the rod with the motor is at the
bottom position. The motor can only rotate in one
direction, so the thrust always points in the same
direction with respect to the motor. However,
applying some thrust to the motor can only raise
the rod, and the rod is lowered passively by grav-
itational force. To the main rod some additional
weights are attached that influence the behaviour
of the system. The interaction with the system
is made through an additional electronic circuit.
The speed of the motor (system input) is voltage
controlled in the range from 0 V to 10 V. The

inclination of the rod (system output) is measured
with a resistive sensor for measuring the angle that
returns the voltage, also in range from 0 V to 10 V.
Since the system is composed of a motor with a
propeller, like the one in a helicopter, mounted on
a swinging rod, which can lift a weight like a crane,
the system name was coined helio-crane.

The system can be mathematically modelled
by writing down the basic physics equation for
rotating objects:

Jϕ̈ = T(ϕ) − f ϕ̇ , (20)

where ϕ is the inclination of the rod, T is the
sum of all the torques on the system, J is the mo-
ment of inertia and f is the damping factor. The
moment of inertia J can be determined from the

Table 2 Helio-crane
(a) model parameters,
(b) input and (c) output
characteristic function
data

a) b) c)

Symbol Value Units u [V] fu [N] ϕ fy [V]

g 9.81 m s−2 0.0 0.0000 14◦ 6.00
ρd 1.13 kg m−1 4.6 0.0000 90◦ 3.52
mm 0.13 kg 4.7 0.1558 177◦ 0.83
mu1 0.145 kg 5.0 0.2727
mu2 0.02 kg 5.5 0.4286
l2 0.128 m 6.0 0.5844
r1 0.34 m 7.0 0.8182
r2 0.2 m 7.5 0.9351
lu1 0.165 m 8.0 1.0130
lm 0.38 m 8.5 1.0909
l2d 0.0269 m2 10.0 1.0909
f 0.15 kg m2 s−1

l1 0.54 m
ψ1 0.3097 rad
ψ2 0.5872 rad
J 0.0483 kg m2

lu2 0.2402 m
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a) b)

Fig. 5 a Input and b output characteristic function

physical dimensions of the helio-crane, applying
some basic knowledge for the calculation of the
partial moments of inertia. According to Fig. 4,
the moment of inertia J is:

J = ρd

(
1

3
l1(r2

1 − r1r2 + r2
2) + l2

(
l2
2

3
+ r2

2

))

+ mml2
m + mu1l2

u1 + mu2l2
u2 (21)

and the torque T is:

T = Fmlm

+ g sin(ϕ)

(
ρd

(
r2

2

2
− r2

1

2

)
+mu1lu1 −mmlm

)
+

+ ρdl2dg sin(ϕ +ψ1)+mu2glu2 sin(ϕ +ψ2) .

(22)

The damping factor f can be heuristically deter-
mined and is defined in Table 2a, where all the
other model parameters are also gathered. The
output characteristic function y = fy(ϕ) is approx-
imately linear (Table 2c, Fig. 5b), but the input
characteristic function Fm = fu(u) is highly non-
linear (Table 2b, Fig. 5a). We can conclude that
the helio-crane is a SISO non-linear system with
second-order dynamics, as Eq. 20 suggests.

6 Simulation and Real Experiment

The control algorithms were compared in a sim-
ulation environment and on a real system. Both
control algorithms were implemented in a MAT-
LAB simulation environment. The continuous
system was simulated using MATLAB function
ode45. For communication with the real system
the MATLAB input-output interface was used. In
the following subsections we present the criteria
functions used for the comparison, the selected
controller parameters for both control approaches
and give the simulation and real results.

6.1 Criteria Functions

To compare the control algorithms several criteria
functions were defined [73]. Besides the error
function e(k) = r(k) − y(k), we used two more
integral (cumulative sum) criteria functions: the
Sum of the Absolute Error

SAE = Ts

∑

k

|e(k)| (23)

and the Sum of the Squared Error

SSE = Ts

∑

k

e2(k) . (24)
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Fig. 6 Simulation. Comparison of FMRLC (left column) and 2 DOF FMPC (right column); a, b reference signal tracking,
c, d control action and e, f error

The introduction of the sample time Ts into the
criteria functions Eqs. 23 and 24 is necessary to
allow for the case when the sampling times of the
compared control algorithms are not equal. To
evaluate the control effort we have taken a closer
look at the change of the input action �u(k) =
u(k) − u(k − 1) and introduced two more integral
criteria functions: the Sum of the Absolute Input
differences

SAdU =
∑

k

|�u(k)| (25)

and the Sum of the Squared Input differences

SSdU =
∑

k

�u2(k) . (26)

The results were also compared by means of the
settling time ts,σ (a minimum time range after
which the output stays within a predefined error
region σ around the reference trajectory) and
the maximum overshoot OS. If there were simi-
lar step reference changes at different operating
points, the maximum settling time and overshoot
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Fig. 7 Simulation. Error
signals around all the
reference steps plotted in
the same time frame for
a FMRLC and b 2 DOF
FMPC
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from among all the responses at different oper-
ating points were selected as the criteria for the
comparison, denoted as max ts,σ and max OS, re-
spectively.

6.2 Controllers Parameters

6.2.1 FMRLC

This method uses three triangular membership
functions that are uniformly spaced on each input
in the controller and three singletons that are
initially distributed uniformly on the output cor-
responding to the allowable range of the control
signal. For the inverse model and the fuzzy system
for the modification of the inverse model three tri-
angular membership functions that are uniformly

spaced on each input are used, respectively, and
three singletons that are distributed uniformly
on the interval on the outputs, respectively. The
transfer function of the reference model was cho-
sen with respect to the dynamics of the controlled
system as Ym(s)

R(s) = 16
s2+8s+16 .

The controller parameters were set to ge =
gw = 0.5, gde = gdw = 1

4 , gu = 10, gp = 1
5 gu = 2.

6.2.2 2 DOF FMPC

For the evolving fuzzy identification a second-
order NARX model was chosen: n = 2 and m = 1
in Eq. 2, so the matrix � with the model parame-
ters takes the form �T = [θ r θu,1 θ y,2 θ y,1]. The
clustering was made on the system output vari-
able y(k). The parameters for the identification
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Table 3 Simulation

Criterion FMRLC 2 DOF FMPC

SAE [V s] 3.9542 3.1606
SSE [V2 s] 1.2743 0.8856
SAdU [V] 257 80
SSdU [V2] 1308 110
max ts,0.025V [s] 1.68 1.40
max ts,0.05V [s] 1.60 1.20
max OS [V] 0.1028 0.0075

Comparison of reference-tracking quality for different
criteria

were set to the recommended values presented
in Section 4.2. The identification process returned
11 clusters for both the simulated and the real

system. To transform the fuzzy model into Eq. 16
we followed the scheme in Eq. 17 for choosing the
state-space variables, so the time-varying state-
space matrices are:

A(k) =
[

βT(k)θ y,1 + βT(k)θ y,2 −βT(k)θ y,2

βT(k)θ y,1 + βT(k)θ y,2 − 1 −βT(k)θ y,2

]
,

B(k) =
[
βT(k)θu,1

βT(k)θu,1

]
. (27)

The controller parameters were set to: prediction
horizon h = 5, reference error-model matrix Ar =
0.65I, states weight Q = diag([10 1 1]T) and input
weight R = 0.1, where I is an identity matrix and
diag(·) a diagonal matrix.
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Fig. 8 Real system. Comparison of FMRLC (left column) and 2 DOF FMPC (right column); a, b reference signal tracking,
c, d control action and e, f error
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Fig. 9 Real system. Error
signals around all the
reference steps plotted in
the same time frame for
a FMRLC and b 2 DOF
FMPC
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6.3 Reference Tracking

The reference signal was chosen to be a stairs-like
signal with the length of each step equal to 10 s and
the height of each step equal to 0.5 V, from 5 V to
1.5 V and then back to 5 V. In this way the helio-
crane goes through the whole range of possible
inclinations. Due to the negative characteristic of
the sensor output, a lower sensor output means a
higher helio-crane inclination (see Table 2c).

Figure 6 shows the input and output signals
from the simulation experiment for both control
algorithms. Around all the reference changes a
10 s time window was selected and the error sig-
nal from all the time windows is shown in one
relative time frame Fig. 7. In Fig. 7 the minimum
and maximum settling times are marked with
vertical lines for two different error regions σ ∈
{0.025 V, 0.05 V} that correspond to 5 and 10 %
of a single reference step height, respectively. The

values of all the criteria used for the comparison
of the control algorithms are collected in Table 3.

The results from the real system are shown in
Figs. 8, 9 and Table 4. The error regions used in
the calculation of the settling time were selected
to be twice as large as in the simulation σ ∈
{0.05 V, 0.1 V}.

Table 4 Real system

Criterion FMRLC 2 DOF FMPC

SAE [V s] 8.3072 5.1093
SSE [V2 s] 2.0584 0.9200
SAdU [V] 3625 329
SSdU [V2] 5885 233
max ts,0.05V [s] 3.43 2.90
max ts,0.1V [s] 2.30 1.30
max OS [V] 0.0450 0.0682

Comparison of reference-tracking quality for different
criteria
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Fig. 10 Simulation. Comparison of input disturbance rejection at three operating points: a–c outputs and d–f inputs around
reference values of 5 V, 3.5 V and 2 V, respectively.

6.4 Disturbance Rejection

The controllers were also compared to see how
good they are at suppressing an input disturbance.

Table 5 Simulation. Comparison of input disturbance re-
jection by different criteria

Criterion FMRLC 2 DOF FMPC

SAE [V s] 0.0478 0.0880
SSE [V2 s] 0.0009 0.0027
SAdU [V] 5.93 5.02
SSdU [V2] 0.91 1.44
max ts,0.005 V [s] 1.32 1.20
max ts,0.01 V [s] 0.62 0.90
max OS [V] 0.0381 0.0518

To the input signal a constant disturbance of 0.5 V
was added at three different operating points: 5,
3.5 and 2 V. The experiments were only conducted
in the simulation environment. The error regions
used in the calculation of the settling time were
selected in accordance with the amplitude of the
disturbance response, σ ∈ {0.005 V, 0.01 V}. The
results are shown in Fig. 10 and Table 5.

7 Conclusion

In this paper FMRLC with a modified adaptation
mechanism was compared with 2 DOF FMPC
control on a non-linear second-order SISO system
helio-crane.
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The simulation results were comparable for
both controllers, as seen in Fig. 6. Nevertheless,
the 2 DOF FMPC gives better results for all the
criteria considered (see Table 3). Even though
the output of the 2 DOF FMPC is more damped
than in the FMRLC, the maximum settling time
is shorter. Both control algorithms perform bet-
ter when the helio-crane is being lowered (see
Fig. 7). A slight overshoot is observed in the case
of FMRLC when the reference inclination angle
is increasing. In contrast to the input action of
FMRLC, which crosses the input constraints of
0 V to 10 V, 2 DOF FMPC does not violate the
input constraints.

The simulation results of the disturbance re-
jection reveal that both control algorithms are
equally good at suppressing input disturbances.
However, FMRLC gives a slightly lower over-
shoot. The output overshoot is relatively small (an
output change of 0.05 V corresponds to an approx-
imately 2◦ change in the helio-crane inclination)
considering the input disturbance was 0.5 V.

The results obtained on the real system are also
in favor of the 2 DOF FMPC in all the criteria
considered, except for the maximum overshoot
(see Table 4), which is a little smaller in the case
of the FMRLC. The comparison of experimental
results made on the real system with the results
from the simulation environment reveal that the
values of some criteria are of different magnitude
(see Tables 3 and 4). The increase of the output
tracking error is mainly due to the measurement
noise and some form of inherent dead zone of the
helio-crane, effects that were not considered in the
simulation environment. The values of the crite-
ria that evaluate the control effort (SAdU and
SSdU) are also much larger in the experiments
made on the real system, especially in the case of
the FMRLC. The ratio of these values between
the simulation environment and the real system
is mainly connected to the closed-loop system
susceptibility to noise. In this aspect the 2 DOF
FMPC gives better results. The settling times mea-
sured in the simulation and real environment are
not comparable, since different error regions were
selected. It is clear that the 2 DOF FMPC achieves
better reference tracking performance on the real
system. Furthermore, the 2 DOF FMPC requires
significantly less control effort that the FMRLC

(see Fig. 8c and Table 4), and yet it achieves better
reference-tracking performance.

The control algorithms were only tested on a
SISO system, since the control algorithms were
developed to work with this class of the sys-
tems. In the future work we will try to extend
our control algorithms to at least some classes of
multiple-input multiple-output systems. Overall,
we can conclude that the 2 DOF FMPC gives
better results than the FMRLC. Nevertheless, the
presented comparison revealed some open issues
that should be addressed in order to further im-
prove the considered control algorithms. The 2
DOF FMPC control gives satisfactory results, but
the sampling time was set to only 0.1 s, since
the current implementation (object-oriented code
in MATLAB) does not allow for much shorter
sampling times. The results show that the 2 DOF
FMPC is a little worse at suppressing input dis-
turbances than FMRLC, so this could also be im-
proved in the future. The experiments on the real
system revealed that the FMRLC algorithm de-
mands high-gain actions in the presence of noise,
and this problem needs to be addressed in the
future.
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forward control of a class of hybrid systems using an
inverse model. Math. Comput. Simul. 82(3), 414–427
(2011)

62. Malchow, F., Sawodny, O.: Model based feedforward
control of an industrial glass feeder. Control Eng.
Pract. 20(1), 62–68 (2012)

63. Oriolo, G., De Luca, A., Vendittelli, M.: WMR con-
trol via dynamic feedback linearization: design, imple-
mentation, and experimental validation. IEEE Trans.
Control Syst. Technol. 10(6), 835–852 (2002)
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